POLYMER COMPETENCE CENTER LEOBEN GMBH

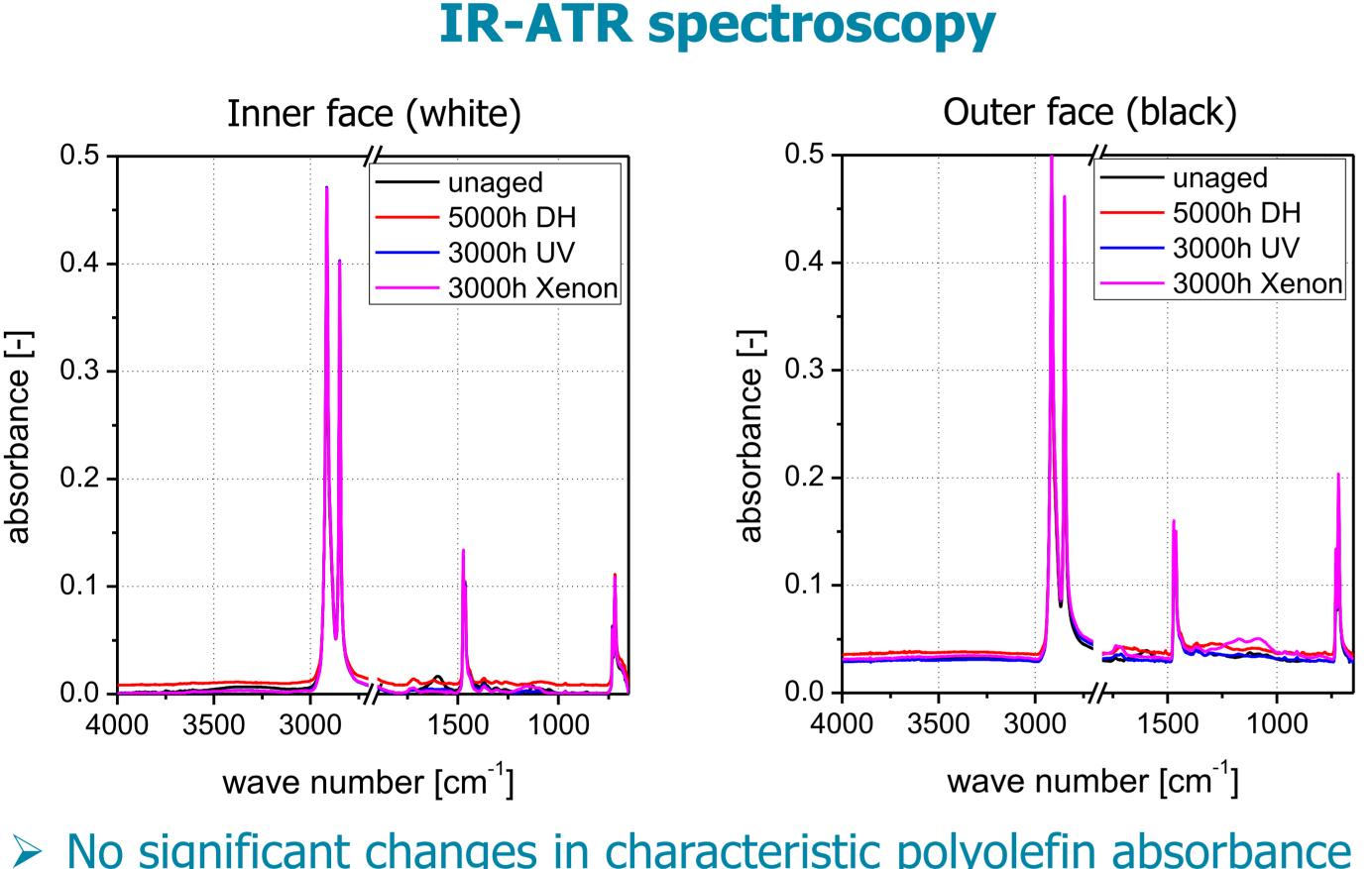
Degradation behavior and reliability of a novel multi-layer polyolefin backsheet film 3MTM ScotchShieldTM 800 for PV encapsulation

G. Oreski¹, W. Schoeppel²,

¹Polymer Competence Center Leoben (PCCL), Roseggerstraße 12, 8700 Leoben, Austria – oreski@pccl.at ² 3M, Carl-Schurz-Straße 1, 41453 Neuss, Germany – wschoeppel@mmm.com

Polymer Competence Center Leoben

Introduction and Objectives

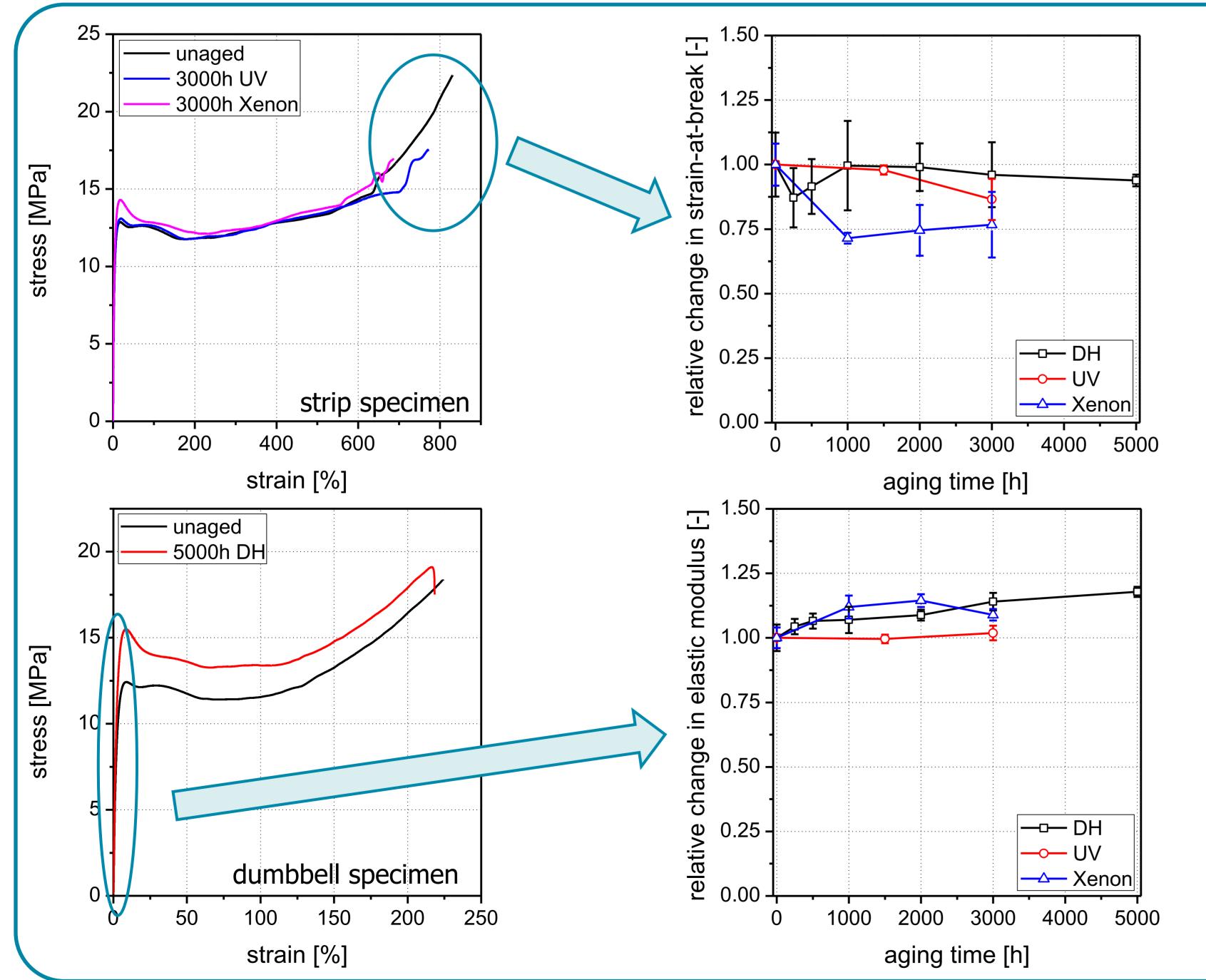

- Increasing cost pressure led to significant R&D efforts in order to find effective alternatives to fluoropolymer containing backsheets
- 3M[™] ScotchShield[™] 800, based on multi-layer polyolefin technology, offers an alternative and cost effective option for PV module manufacturers
- \rightarrow Determination of the material behavior after exposure to relevant load parameters temperature, humidity and ultraviolet radiation

Accelerated weathering

Test	Phases	Irradiance	Temperature	Humidity
Damp heat (DH) IEC 61215	-	-	85 °C	85 % RH
Xenon ISO 4892-2 Method A Cycle 1	Phase 1: 102 min dry Phase 2: 18 min water spray	Xenon arc lamp 60 W/m ² between 300 und 400nm	65 °C	50 % RH
UV ISO 4892-3 Method A Cycle 1	Phase 1: 8 h dry Phase 2: 4 h condensation	UVA340 fluorescent lamp Phase 1: 0,76 W m ⁻² nm ⁻¹ at 340nm Phase 2: light off	Phase 1: 60 °C Phase 2: 50 °C	Not controlled

UV/Vis/NIR spectroscopy

Results: Aging characterization



- No significant changes in characteristic polyolefin absorbance spectra due to chemical aging during accelerated weathering
- Inner face (white) Outer face (black) 1.00 1.00 unaged unaged 5000h DH 5000h DH 3000h UV - 3000h UV 3000h Xenon 0.75 -3000h Xenon 0.75 reflectance [-] reflectance [-] 0.50 -0.25 -0.25 -0.00 0.00 1000 1500 2000 2500 1000 1500 2000 2500 500 500 wavelength [nm] wavelength [nm]
- \succ No significant changes in reflectance spectra due to <u>chemical</u> aging during accelerated weathering
 - > Slight discoloration of inner face after damp heat testing > Formation of chromophoric groups due to chemical aging \succ No significant changes in the UV region of wavelength > Effective UV protection also after weathering

➢ Formation of small peaks around 1720 cm⁻¹ and between 1300 and 1000 cm⁻¹

➤Carbonyl groups

> Slight changes in the region between 1700 and 1500 cm⁻¹ >Vibrations of aromatic rings of additives and stabilizers

Tensile test

- > Material exhibits ductile behaviour with high plastic deformation and strain hardening after the yield point
- Scattering in strain-at-break and stress-at-break values presumably due to the laboratory co-extrusion process
- > No significant changes in ultimate mechanical properties after damp heat testing
 - > No effects of chemical aging observable
 - \rightarrow Materials used in the backsheet film are not susceptible to hydrolysis
 - → Temperature level of 85 °C to low to induce thermo-oxidation
- > Slight changes in ultimate mechanical properties after exposure to UV radiation
 - Chemical aging
 - \succ Stronger decrease after xenon weathering, presumably due to the higher specimen temperature during exposure
- > Slight increase in elastic modulus and yield strength after damp heat and xenon test
 - > Physical aging
- > No delamination effects after weathering
- No significant chemical aging effects were observed for the polyolefin multi-layer film
- Conclusion
- \rightarrow Excellent long term weathering stability estimated

3MTM ScotchShieldTM 800 film offers a high potential as a backsheet for PV modules

This research work was performed at the Polymer Competence Center Leoben (PCCL) within the project "PV Polymer" (FFG Nr. 825379, 3. Call "Neue Energien 2020", Klima- und Energiefonds) in cooperation with the Chair of Materials Science and Testing of Plastics at the University of Leoben, Perkin Elmer and 3M. The PCCL is funded by the Austrian Government and the State Governments of Styria and Upper Austria.

